

SOLID OXIDE CELLS FOR ELECTROLYSIS AND POWER GENERATION

15.11.2023 | CHRISTIAN LENSER

OVERVIEW

• The need for green H₂ in Europe (and worldwide)

Why SOC? Benefits and disadvantages

SOC research at IEK-1

WHY THE INTEREST - "NO-REGRET" HYDROGEN

Green molecules needed?	Industry	Transport	Power sector	Buildings
No-regret	Reaction agents (DRI steel) Feedstock (ammonia, chemicals) Long-haul aviation Maritime shipping		 Renewable energy back-up depending on wind and solar share and seasonal demand structure 	· Heating grids (residual heat load *)
Controversial	· High-temperature heat	 Trucks and buses ** Short-haul aviation and shipping Trains *** 	 Absolute size of need given other flexibility and storage options 	
Bad idea	· Low-temperature heat	· Cars · Light-duty vehicles		· Building-level heating

- Green H₂ is <u>necessary</u> to decarbonize certain parts of the energy and production sectors
- Focus on use as chemical agent (e.g. steel) or chemical feedstock (e.g. e-fuels, fertilizer)
- Electrolysis ("water-splitting") is a good way to get green H₂

ELECTROLYSIS TECHNOLOGIES

ELECTROLYSIS: NOW - 2030

Planned electrolyser manufacturing capacity by region, 2021-2030

GW/y

https://www.iea.org/data-and-statistics/charts/planned-electrolyser-manufacturing-capacity-by-region-2021-2030

"The electrolysis capacity currently installed in the EU will need to increase almost 900-fold within just eight years." (SWP Comment "Electrolysers for the Hydrogen Revolution, 2022)

➤ EU target is 120 GW installed capacity by 2030

TRL Electrolysis

https://www.iea.org/reports/electrolysers

ELECTROLYSER PROJECTS IN EU AND WORLD

"World's largest green hydrogen project!"

Project	Rated power (MW)	Technology	Manufacturer	Use case
Shell Holland Hydrogen 1	200	Alkaline	ThyssenKrupp Nucera	ChemPark
H2 Green Steel (SE)	700	Alkaline	ThyssenKrupp Nucera	Steel industry
NEOM (SA)	2200	Alkaline	ThyssenKrupp Nucera	Export
European Energy & others (DK)	> 250	PEM	Plug Power	e-fuels
Kuga (CN)	260	PEM	Longi, Peric and Cockerill Jingli Hydrogen	refinery
Prosgrunn (NOR)	24	PEM	ITM Power	green ammonia
MultiPLHY (Rotterdam)	2.6	SOEC	Sunfire	Neste refinery
NASA (USA):	4	SOEC	Bloom Energy	Research

OVERVIEW

• The need for green H₂ in Europe (and worldwide)

Why SOC? Benefits and disadvantages

SOC research at IEK-1

SOLID OXIDE CELLS – WHAT IS IT?

Fuel cells and electrolyzers are electrochemical energy conversion devices

SOLID OXIDE CELLS – WHAT DOES IT LOOK LIKE?

- SOC are ceramic multilayer structures
- Each layer has a dedicated function, e.g.
 - Mechanical support
 - Electrochemical reactions
 - Ion transport and gas separation
- Different cell designs exist
 - Electrolyte-supported (~ 850 °C)
 - Electrode-supported (~ 700 °C)
 - Metal supported (< 700 °C)

SOLID OXIDE CELLS – MATERIAL SELECTION

- Air electrode: LSCF: La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-δ} (LSCF) or La_{1-x}Sr_xCoO_{3-δ} (LSC)
- Diffusion barrier layer: Gd_{0.2}Ce_{0.8}O_{1.9} or Gd_{0.1}Ce_{0.9}O_{1.95} (GDC20 / GDC10)
- Electrolyte: $(Y_2O_3)_{0.08}(ZrO_2)_{0.92}$ or $Y_{0.148}Zr_{0.852}O_{1.926}$ (**YSZ**)
- Fuel electrode / support: Ni / YSZ cermet

CELL - STACK - SYSTEM

HIGH TEMPERATURE – PRO AND CON

Thermodynamics

Electricity demand decreases with increasing temperature!

Pro

- High efficiency possible
- Integration with high-temperature processes is beneficial
- Fuel flexibility: hydrogen, carbohydrates, CO
- (relatively) High tolerance against impurities
- Reversible operation SOFC and SOEC in one system!

<u>Con</u>

- Operation conditions are demanding for materials (corrosion!)
- Long start-up times -> stationary operation
- High cost & low availability
- Difficult scaling (fragile cells)

OVERVIEW

• The need for green H₂ in Europe (and worldwide)

Why SOC? Benefits and disadvantages

SOC research at IEK-1

Solid Oxide Cells @ Juelich

IEK-1

Materials Synthesis and Processing

Head: Prof. Dr. Olivier Guillon SOCs: Prof. Dr. Norbert H. Menzler

Ceramics, cells, functional layers

Head: Prof. Dr. Michael Eikerling

SOCs: Dr. Thomas Kadyk

Materials

modelling

IEK-13

Theory and Computation of **Energy Materials**

IEK-2

Microstructure and Properties

Head: Prof. Dr. Ruth Schwaiger SOCs: Dr. Dmitry Naumenko

> Metals, kinetics, thermodynamics

Head: Prof. Dr. Rüdiger A. Eichel SOCs: Dr. L.G.J. (Bert) de Haart Dr. Felix Kunz

evelopment, charact. & opt. of cells, stacks & systems

IEK-9 **Fundamental** Electrochemistry

ZEA-1 Engineering and Technology

Head: Prof. Dr. Ghaleb Natour SOCs: DI Nikolaos Margaritis

> Stack assembly, sealing/welding

Solid Oxide Cells @ IEK-1

People

PhD students

Division head

Scientists

Technicians

HIGHLIGHTS: SOC IN JÜLICH

- · Long-term testing of short stacks
- World-record in longest runtime of any fuel cell (> 11 years; 93 kh)

- Cell development since ~ 1995
- Increased power density > 10-fold through optimization of materials and microstructures

OXIDE-ION CONDUCTING CELLS

- Oxide-ion conducting materials for electrode and electrolytes
- Processing into layered ceramic systems
- Material interactions
- Testing and characterization

HIGH-PERFORMANCE SOFC

YSZ electrolyte (2 µm via sol-gel) GDC barrier (0.5 µm via PVD)

➤ Best cells from Jülich at the time (2020)

C. Lenser et al., Journal of Power Sources, 474 (2020) 228671

Page 20

HIGH-PERFORMANCE SOEC

- Ni-GDC fuel electrode requires GDC electrolyte
- YSZ electron blocking layer necessary
- > Three layer electrolyte
- ➤ Best cells from Jülich at the time (2023)
- J. Zhang et al., Journal of the American Ceramic Society, 106 (2022) 93-99.

- Very high performance
- Cell failure at high electrolysis current at intermediate temperature

ELECTRO-CHEMO-MECHANICAL ANALYSIS

C. Lenser et al., Journal of Power Sources, 541 (2022) 231505.

THANK YOU FOR YOUR ATTENTION

CHRISTIAN LENSER

